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Abstract-Therma convection in a fluid-saturated porous layer is examined by means of integral relations 
for the case in which the viscosity is temperature dependent. The analysis deals with the high Rayleigh 
number limit and extends earlier work on the constant viscosity problem. A rational transformation is found 

which reduces the core shear distribution to a universal form. 

NOMENCLATURE Subscripts 

function defined in equation (3.7); 
function defined in equation (3.12); 
function defined in equation (3.8); 
function defined in equation (3.13); 
boundary layer profile; 

acceleration due to gravity; 

cavity height ; 

m, 

L,O, 
=,, 

function defined in equation (3.20); 
permeability ; 
constant in the viscosity law; 
cavity aspect ratio, I/h; 
cavity length ; 

THIS paper is concerned with buoyancy induced 
convection in a fluid-saturated porous layer for which 
the viscosity may depend strongly on the local tem- 
perature. The particular geometry of interest cor- 
responds to a two-dimensional rectangular cavity, of 
finite aspect ratio, whose vertical end walls are parallel 
with the direction of the gravitational field. A horizon- 
tal temperature gradient is maintained across the 
cavity by differentially heating the end walls so that the 
Rayleigh number associated with the applied tempera- 
ture difference is large. Problems of this type have 
previously been discussed, for example, by Weber [l] 
and, for a constant viscosity fluid, by Walker and 
Homsy [Z] and by the present authors [3] ; experimen- 
tal studies have been described by Klarsfeld [4]. A 
comprehensive review of the literature which outlines 
the diversity of the applications has been given by 
Combarnous and Bories [5]. 

M( T, ; Qfunction defined in equation (3.9) ; 
Nu, Nusselt number; 
N@, reduced Nusselt number, equation (3.25); 
Q(Tm), function defined in equation (3.15); 

R, Darcy-Rayleigh number ; 

$T,), 

fluidity; 
function defined in equation (3.16); 

T, temperature ; 

@(Z), core shear profile; 

XJ, Cartesian coordinates. 

Greek symbols 

a, coefficient of thermal expansion ; 
& constant in viscosity law, equation (4.2); 

6 boundary-layer thickness; 

% similarity variable; 

K, thermal diffusivity; 

v, kinematic viscosity; 

5, parameter; c = 0 on X = 0, < = 1 on 
ff = L; 

$5 stream function. 

Superscripts 

_’ 
*’ 

, 

dimensiona! quantity ; 
dimensionless quantity; 
universal profile. 

value at the maximum of the stream 
function ; 
hot and cold wall values, respectively; 
core values. 

1. INTRODUCTION 

The steady flow that occurs at large Rayleigh 
numbers is characterized by a stratified inviscid core 
surrounded by thin thermal layers on the cavity walls. 
It is important to note that although the applied 
temperature gradient is in the horizontal direction, the 
core temperature field is vertically stratified. The core 
structure is apparently dominated by the boundary 
layers on the vertical end walls. Weber [l] gave an 
analysis of these layers, together with the compatible 
core structure, using the modified Oseen method 
described by Gill [6] for the corresponding Newtonian 
problem at large Prandtl numbers. 

An alternative approach to cavity flows, based on 
integral relations, was developed by Blythe and Simp- 
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kins [7]. Application of the method to the Newtonian 
problem indicated that the procedure gave better 
results than the Oseen technique, although there was a 
discrepancy in the core mass flux when compared with 
numerical solutions of the full equations. This discrep- 

ancy was less than the corresponding result for the 

Oseen method, and a recent analysis [3] has shown 
that the disagreement was due to the inherent error in 

the boundary layer approximation to the full (Bous- 
sinesq) equations. In particular, the integral method 

[3] led to results for the mass flux, in the constant 
viscosity case. which were in excellent agreement with 

a numerical solution of the boundary-layer equations 

[2]. As in the Newtonian problem, the core mass flux 

obtained using the Oseen approach was significantly 

higher than that predicted by thenumerical solution. A 
comparison with experimental data [4] for the Nusselt 
number and for the core temperature profile was also 
given in [3] for the constant viscosity case. Again the 
integral method led to results which were in good 
agreement with the observations at high Rayleigh 

numbers. 
The analysis given in this paper extends the earlier 

work [3] to account for the effects of a temperature 

dependent viscosity. This case was first discussed by 
Weber [ 11 who used an averaged value of the viscosity 

for the hot and cold wall boundary layers respectively. 

No such approximation is made in the present paper 
which, as in [3], is based on an integral method. The 
method can take into account any desired variation of 
the viscosity with temperature, and results are given 

for the particular case of a linear fluidityytemperature 

law. For the present approach the only errors are those 
associated with the choice of velocity profiles, but for 
the Oseen method the averaging of the viscosity 

relationship introduces an additional error source A 
detailed discussion of this point, and its effect. is given 

in Section 4. 

The main finding of the present paper, however, is 
concerned not with the accuracy of the technique, but 

with the remarkable conclusion that the results in the 

variable viscosity case, for the core mass flux and for the 
core shear profile. can be collapsed onto a universal 
curve by means of a simple rational transformation 

(see Section 4). As well as suggesting a test for future 
theoretical calculations which use realistic viscosity 

models, this result should also be of great interest to 

experimentalists in various fields. 

2. INTEGRAL RELATIONS FOR THE 
BOUNDARY LAYER EQC’ATIOUS 

It is convenient to use the dimensionless variables 
introduced in 131. In addition it is appropriate to 

define a dimensionless Gscosity by 

I$( T) = V’( T)iv’(O) (2.1) 

where primed variables have dimensions. Here 7“ is 
the temperature and, in dimensionless terms, is mea- 
sured such that T= 0 on the cold wall X = 0 and T= L 
on the hot wall .U = L. All length scales are normalized 

with respect to the cavity height, and the lower and 
upper surfaces correspond respectively to Z = 0 and to 
=- 1. 

Near the cold wall, S = 0. the boundary-layer 

equations reduce to [l, 3] 

and IZ.,J 

where the stream function Ic, is related to the dimen- 

sional quantity $’ through 

and the local length scales x and z are defined by 

< = R-“‘.x, t_ ;. (7.4) 

In equations (2.3) and (2.4) 

R= 
KagT~h2 

KV’(O) / 
>> 1 (2.5) 

is a Darcy-Rayleigh number in which K is the thermal 

diffusivity, K is the permeability, a is the coefficient of 

thermal expansion, g is the acceleration due to gravity, 
I is the cavity length, h is the cavity height and Tw is the 

(dimensional) temperature difference across the cavity. 
Also, in equation (2.2) 

T,(z) = T(r_.z). (2.6) 

At large Rayleigh numbers, it can be shown that in 
the core of the cavity the shear and temperature 
distributions are subject only to vertical gradients [ 1. 

61. Consequently 

$X(Z) = i(‘%Z) (2.7~ 

and T,(z), as well as defining the outer limit of the 
boundary layer solution, completely define the core 

stream function and the core temperature distribution. 

These functions must be determined from the solution 
of the boundary-layer equations for both end walls. 
For the hot wall the boundary-layer equation can be 
written down in a manner analogous to equation (2.2): 

details can be found in the paper by Weber [l]. 
lntegration of equation (2.2) across the boundary 

layer, together with the corresponding results for the 
hot wall, implies that 

CT- T.)‘r(TJdx 1 dTx f ti, -do 

$, = AI s ’ (T, - T)r(T)dx (2.9) 
0 

where 
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r(T) = v-‘(T) (2.10) 

is the dimensionless fluidity. For these equations the 
upper sign is associated with the cold wall 2 = 0 and 
the lower sign with the hot wall 1 = L. In the special 
case of constant viscosity (v = 1) the integral relations 
for the hot wall can be replaced by appropriate 
symmetry conditions [3]. 

It is convenient, with respect to the boundary-layer 
equations, to introduce the transformation 

7-qLT, $aL”*1(1, x*L-“2X (2.11) 

under which the general form of equations (2.6) and 
(2.7) is invariant. [For ease of discussion the viscosity 
law is still written v = v(T), though strictly v = v(LT) 
for the variables defined by equation (2.11). This law 
will also contain additional parameters, see Section 4.1 
Further, in terms of these variables, it follows that at 
the end walls 

r=g=*=O on?=0 (2.12) 

and 

8T 
T= 1, -=$=O oni=L. 

ax2 
(2.13) 

Similarly, the outer limit of the boundary-layer so- 
lution is defined by 

T+ T,(z), ti -+ tim(z) as x-* cc (2.14) 

with a corresponding result for the hot wall. 

3. THE CORE SOLUTION 

For the cold wall boundary-layer it is assumed that 
the temperature profile can be approximated by the 
similarity form 

T= T&Xl - ~&,,I (3.1) 

where ‘lo is based on the cold wall boundary-layer 
thickness 

M) = Xl%. 

Further, F, satisfies the conditions 

(3.2) 

and 
F(O) = 1, F”(0) = 0 
F,(co) = Fc(co) = . .. = 0 . (3.3) 

A corresponding assumption for the hot wall implies 
that 

1 - T= (1 - T,)[l - FL(IIL)I (3.4) 

where qL is based on the hot wall boundary-layer 
thickness hL. Since FL(qL) also satisfies the conditions 
(3.3) it is asserted that 

F,(V) = FL.(V) = F(V), (3.5) 

although mathematically this assumption is not 
strictly necessary. Even though equation (3.5) is as- 
sumed to hold, it is emphasized that the boundary- 
layer thicknesses which define ‘to and qL are not the 
same. 

Substitution in equations (2.8) and (2.9) gives, for the 
cold wall layer, 

&[a(~,)~,),1 - $_f$ = -b(T;)Ts 
I 

where 

and 

G,) = MN-, ; WM,G’-, ;O) 

NT,) = - F’(O)M,(T, ; 01, 

with 

s 

m 
MD’,; 5) = F”(v) r(T)drl. 

0 

In (3.9), T= T(q; 5) is defined by 

T= TJl - W/)1 + U’(v) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

where 6 = 0 for the cold wall and 5 = 1 for the hot 
wall. The corresponding results for the hot wall layer 
are 

%Tm)U - T,)’ = 
*, 

(3.11) 

where 

and 

W,) = M,(T,; lYM,C’-,; 1) (3.12) 

i(T,)= - F'(O)M,(T,; 1). (3.13) 

From equations (3.6) and (3.8) it can be shown that 

+$= Q(T,) 
cc m 

where 

Q(7) 

(3.14) 

(1 - 7)‘6$[(1 - 473 + r2b&[(1 - ci)(l - 7)] 

= 
7(1 - r)[a&l - 7) + a^bt] 

(3.15) 

In (3.15) the argument of the functions a, 4, b, b^is to be 
understood as 7. Since Q( T,) is singular at 7, = 0,l it 
is convenient to write 

S(7) = Q(7) _ (l - a,) (l - 27) ~~ 
a0 r(1 - 7) 

(3.16) 

with 

a0 = a(0) = a*(l). (3.17) 

S( T,) remains bounded as T, + 0,l and the solution 
of (3.14) can be put in the form 
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6%. = c[T,(l - T,)](f’-+’ exp { 11% Wdi j 

1.3.18) 

where c is an arbitrary constant. For the constant 
viscosity case S = 0 and equation (3.18) reduces to the 
result obtained in [3]. 

Further, it can be shown from equations (3.6) and 
(3.14) that 

dz _-_= 
dT, 

c2J(T, 1 (3.19) 

where 

J(r) = !~-‘VLt# d 
--gr-- 1 - --(a~) - arQ(r) 

ds 

(3.20) 

As in earlier approaches to this problem [l, 61 it is 
assumed that 

$,(O) = $,(l) = 0 

which implies from equation (3.18) that 

(3.21) 

T,(O) = 0, T,(l) = 1. (3.22) 

Condition (3.21), or an equivalent statement, is nec- 
essary to complete the solution. This condition cor- 
responds to the assertion that the vertical boundary 
layers empty into the core. Alternative assumptions 
concerning the horizontal conditions on the core 
solution have been made, but it was shown in [3] that 
the assumption (3.21) gives good results for the 
constant viscosity case. Strictly, the proper horizontal 
constraints should be derived from a solution of the 
boundary-layer equations which hold near the sur- 
faces z = 0,l. A recent analysis of the latter problem 
[S] has indicated that equation (3.21) is the correct 
condition in the limit R + r;. From equations (3.22) 
and (3.19) it follows that 

z = [;‘J(r)dr /j,iiJ(,,, (3.23) 

with 

1 

[S 1 

- I.2 
L'= J(T)d? . (3.24) 

0 

Equations (3.181, (3.23) and (3.24) provide a para- 
metric description of the solution for a given viscosity 
law: L:- ’ $, can be evaluated from equation (3.18) as a 
function of T,, equation (3.20) then defines J(T,), and 
z(T,) is found from equation (3.23). Results for a 
particular choice of r(T) are discussed below. 

For insulated horizontal boundaries the heat trans- 
fer across the vertical planes X = 0, L is the same. An 
appropriate Nusselt number for the cavity heat trans- 
fer is defined by 

(3.25) 

where 

As noted above, equations (3.25) and (3.26) define 
the heat transfer across either vertical end plane only 
for insulated horizontal surfaces. The assumption that 
the horizontal boundaries are insulated does not 
conflict with equation (3.22) since that condition 
corresponds to the outer limit of the appropriate 
horizontal boundary-layer solution valid near z :=: 0 
and z = 1 [S]. Independently of the horizontal thermal 
condition, equation (3.25) does represent the heat- 
transfer across the cold wall N = 0. 

The determination of the functions u, Li, b and fi 
follows from the specification of the boundary-layer 
profile F(q). This profile is subject to the conditions 
listed in equation (3.3). Possible profiles werediscussed 
in [3] and, as noted there, a suitable choice is the two- 
taver model 

(3.27) 

t/ > 1. 

At q = 1 the function F and its first two derivatives are 
continuous. The inner behavior (q -+ 0) and outer 
behavior (Y/ -+ X) are both consistent with the form of 
the solution of the full boundary-layer equations. 

4.RESUL'l-S 

~lculations were carried for the special case 

v-‘(T) = r(T) = 1 + kT (4.1 t 

over the range 0 < k < 100. In practice k should be 
chosen so that equation (4.1) represents a satisfactory 
approximation to the viscosity variation over the 
dimensionless temperature interval 0 I Tc 1. Vis- 
cosity laws of the type in equation (4.1) are often used 
and an extensive discussion can be found in Partington 
[9]. It is not suggested that equation (4.1) will be an 
adequate representation of the viscosity variation 
when k >> 1, but in this limit the results should still 
indicate the appropriate qualitative behavior. If a 
better approximation is required for liquids in which 
the viscosity varies very rapidly, exponential fits of the 

type 

r=“-l= exp(,t;T), (4.2) 

where k and p are constants, can be used. Equation 
(4.2) corresponds to the dimensionless form of the 
Eyring model [lo]. The evaluation of the functions u, 
h, u*, 6 etc. is a tedious task for this law and, if a more 
accurate representation of the data than that defined 
by equation (4.1) is warranted, it is easier to use 
polynomial fits for which equation (4.1) defines the 
linear approximation. 
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FIG. 1. Core temperature profiles for various k. 

The functions a(T,), a*(T,) etc. are given in the result, but it does not yield a simple analytical result for 
Appendix for the viscosity law (4.1). It is assumed that the limiting profile.) The temperature profile in the 
the boundary-layer profile can be fitted by the two- cavity is often characterized by the mid-point tempera- 
layer model discussed in Section 3. Allowing for the ture gradient which is shown in Fig. 2 as a function of k. 
singularities at the end points T= 0 and T= 1, it is For variable viscosity the temperature gradient is no 
then a straightforward numerical procedure to per- longer a minimum at the mid-point; the minimum 
form the quadratures associated with equations (3.14) now occurs at z = z, > 4 (k > 0) and is associated with 
and (3.19). the local maximum in the stream function. 

Some results for the temperature profile are shown The dependence of the temperature distribution on 
in Fig. 1. Note that as k -+ co, apart from the local the viscosity has the same qualitative behavior as that 
behavior near z = 0 and z = 1, the temperature profile predicted by Weber [l] using the modified Oseen 
does appear to approach a limiting form. (An asym- method with an averaged viscosity. Figure 2 also 
ptotic analysis, k B 1, can be given confirming this shows the minimum temperature gradient as a 
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FIG. 4. Dependence of the stream function maximum $r, on k. 

function of k for the Weber theory. As in the constant 
viscosity limit this characteristic core gradient lies 
below the results obtained by the present method. For 
k = 0 the integral method gives excellent agreement 
with the numerical solution of Walker and Homsy [2]. 
As k + cc the Oseen value of (dT,/dz),, -+ 0.509, 
compared with the value0.535 predicted by the present 
theory. 

Stream function profiles are shown in Fig. 3. The 
dependence of the stream function maximum &,, on 
the viscosity parameter k is displayed in Fig. 4 both for 
the present integral method and for the Oseen (aver- 
aged viscosity) approach. As noted earlier, for k = 0 
the integral method agrees well with a numerical 
solution of the boundary-layer equations, but the 
Oseen approach leads to a significant overestimate of 
the core mass flux. For moderate values of k (5 1) this 
behavior is repeated and the two solutions have a 
similar trend with respect to k. At larger values of k, 
however, a marked change in this pattern occurs. The 
Oseen approach, using an averaged viscosity, leads to 

$,,, -+ 1.277, k + co, (4.3) 

while for the present integral method 

$I,,, _ 0.553k’@, k-a co. (4.4) 

In the dimensionless units used here the cold wall 
viscosity v(0) = 1 and, ask + co, the hot wall viscosity 
v(l) = O(k- ‘). Further, away from any region where 
T-CC 1, i.e. the cold wall and the bottom of the core, the 
viscosity is Ofk- ’ ) everywhere. This suggests that the 
hot wall viscosity is a more characteristic value on 

which to base the Rayleigh number when k >> 1. 
Introduction of this change suggests that Ic/I. km”’ 
should limit as k + co [see equations (2.3) and (2.5)], 
which is in accord with the theoretical result, equation 
(4.4). It is apparent that the averaging approach fails 
for large k. For the Oseen method, as k + cc, the 
averaged cold wall boundary-layer viscosity is 314, and 
the corresponding value for the hot wall layer is l/4 
[l]. This should be contrasted with the observation 
made above that, over most of the region, the effective 
viscosity is O(k-I). 

In order to display the present results for the stream 
function over a broad range of the viscosity parameter, 
it appeared to be most convenient to use as dependent 
variable IL,/+,,,. Inspection of the calculations further 
indicated that the results could possibly be collapsed 
onto a universal curve of the form 

where 

z’= (1 - zmfz 
z-z,+2z,(l-z)’ 

(4.5) 

The choice of the rational transformation (4.6) is such 
that for k = 0 (i.e. z, = t), i = z. Further, for all k, 

t=O atz=O, 

;=$ atz=z,, (4.7) 

?=l atz=l. 
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FIG. 5. The universal curve for the reduced stream function 

FE<;. 6. The universal curve for the reduced shear profile. 
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FIG. 7. Scaled Nusselt number N@(k). 

Obviously, if a universal curve exists it is defined by 

(4.8) 

This function, together with results for k = 1, 10 and 
100, is shown in Fig. 5. It is apparent that the results are 
well fitted by the profile (4.8). Equation (4.5) can be 
differentiated to give a reduced shear profile 

Again if G(Z) does reduce to a universal curve it must 
correspond to the solution defined by the constant 
viscosity profile for k = 0. Results for k = 0, 1, 10 and 
100 are shown in Fig. 6. Although the di~erential form 
(4.9) is a stronger test of the scaling law than the stream 
function profiles, the data again collapses remarkably 
well onto the single curve corresponding to k = 0. 

The heat transfer across the cavity is defined by the 
Nusselt number 

Nu = ~3’z~1’z~u*(k) (4.10) 

when Nu* is defined by (3.26). Results for Nu*(k), for 
the viscosity law (4.1), are shown in Fig. 7. 

The heat transfer across the cavity, both for Weber 
and for the present theory, is characterized by a 
Nusselt number-Rayleigh number relation of the form 

Nu-CR”‘, R-irx: 

where the constant C depends on the cavity aspect 
ratio L and the parameter k associated with the 
viscosity-temperature law. In neither theory does the 
viscosity variation affect the RI!* law (R + (I;)) but 

merely changes the constant of proportionality C 
(= L3” Nu’(k)) independently of R. Numerical so- 

lutions (Bankvall, [12]) confirm this law in the con- . 
stant vlscoslty case as R -+ cg. Other theories which 
attempt to take into account departures from this law 

at smaller values of R have been proposed (see Bejan 
[13]). In all cases these laws still reduce. to the above 
form as R increases. A detailed discussion was given in 
Section 5 of the first paper [3]. 
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APPENDIX 

~~~~~~~f~~~s a(T, ), $rz ), b(T,,) and 6(T x ) 
For the viscosity law (4.1) these functions are given by where 

I, + (IL - I,)kT, a = .-...-l-.- __~ I, = 
I, + (1, - I,)kT, ’ i 

I 
F”(tl)da. 

s 0 

and 

(A)) For the inner-outer profile described m Section 3 

~ i, + t,k + (j2 - I,)kT, 
a- 

and 

b = - F’(O)[/, + (I, - I,)ki-,I, 

h^ = - F'(O)[l, + I,k + (1, - f,)kT,], 

(A21 

F’(0) = - ,‘:, 

CONVECTION DANS UNE COUCHE POREUSE POUR UNE VISCOSITE FONCTION DE LA 
TEMPERATURE 

R&sum6 - On &die la convection thermique dans une couche poreuse saturee de hide, B I’aide de relations 

inttgrales dans le cas od la viscosith est fonction de la temprkature. L’analyse envisage la limite du nombre de 
Rayleigh et elle prolonge les travaux antirieurs relatifs a une viscosite constante. Une transformation 

rationnelle riduit la distribution centrale a une forme universelle. 

KONVEKTION IN EINER PORdSEN SCHICHT BEI 
TEMPERATURABHANGIGER ZAHIGKEIT 

Zusammenfassung----Thermische Konvektion in einer fliissigkeitsgeslttigten poriisen Schicht wird mit Hilfe 
integraler Beziehungen fiir den Fall tem~raturabh~ngiger Zahigkeit untersucht. Die Untersuchung 
behandelt den Grenzbereich hober Rayleigh-Zahlen und se&t friihere Arbeiten zum Problem konstanter 
Zahigkeit fort. Es wurde eine zweckmiiBige Transformation gefunden, mit deren Hilfe die Schubspannungs- 

verteilung im Zentrum auf eine universelle Form gebracht werden kann. 

KOHBEKHWI B IIOPHCTOM CJlOE C BX3KOCTbI0, 3ABHCXIIIEH OT TEMllEPATYPbl 

Amo+auna - C nOMOmbH) HHTerpaJlbHbIX COOTHOmeHH~ HCCJleLIyeTCK TellJlOBaa KOHBeKLlWR B IIOpWTOM 

Woe, HaCbImeHHOM XWLlKOCTbK?, JIJIR CJly’laK, KOrJla BR3KOCTb 3aBUCHT OT TeMuepaTypbI. PaCCMaTpH- 

BaeTCR 06naCTb BblCOKIlX ‘IHCeJl PeIle% W &.%3yJlbTaTbl paHee IIpOBeAeHHOfi pa6OTbI 0606~ua~wa Ha 
cnyvafi nOCT0RHHOit BR3KOCTA. nonyYeH0 npeo6pa3oeanHe, no38on5uomee up%BeCTli nanprxewie 

CnBHfa B UeHTp CJIOR K YH~ae~a~bHOMy BK,‘ly. 

PJ) 
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